Evaluating a suitable level of model complexity for finite element analysis of the intact acetabulum
S.G. Clarke,
A.T.M. Phillips and
A.M.J. Bull
Computer Methods in Biomechanics and Biomedical Engineering, 2013, vol. 16, issue 7, 717-724
Abstract:
To enable large-scale multi-factorial finite element (FE) studies, the FE models used must be as computationally efficient as is feasible, while maintaining a suitable level of definition. The present study seeks to find an optimum level of model complexity for use in such large-scale studies by investigating which model attributes are most influential over the chosen model outputs of principal stress and strain in the intact acetabulum. A multi-factorial sensitivity study was carried out using 128 FE models, representing combinations of the following variables: bone stiffness distribution, imposed muscle loading, boundary condition location, hip joint contact conditions and patient's bone anatomy. The relative sensitivity of each input factor was analysed, and it was concluded that the optimum level of model definition must include CT-dependent trabecular bone properties and a sliding interface at the hip joint. It was found that it was not essential to describe the ligamentous sacroiliac and pubic symphysis joints; these could be rigidly fixed in space; and for the normal walking load case, muscle forces may be neglected. It was also concluded that a variety of bone anatomies should be included in a multi-factorial analysis if results are to be inferred for a wider population.
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2011.633906 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:16:y:2013:i:7:p:717-724
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2011.633906
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().