Computational simulation modelling of bioreactor configurations for regenerating human bladder
Seokwon Pok,
Dhananjay V. Dhane and
Sundararajan V. Madihally
Computer Methods in Biomechanics and Biomedical Engineering, 2013, vol. 16, issue 8, 840-851
Abstract:
The objective of this study was to investigate a bioreactor suitable for human bladder regeneration. Simulations were performed using the computational fluid dynamic tools. The thickness of the bladder scaffold was 3 mm, similar to the human bladder, and overall hold-up volume within the spherical shape scaffold was 755 ml. All simulations were performed using (i) Brinkman equation on porous regions using the properties of 1% chitosan–1% gelatin structures, (ii) Michaelis–Menten type rate law nutrient consumption for smooth muscle cells (SMCs) and (iii) Mackie–Meares relationship for determining effective diffusivities. Steady state simulations were performed using flow rates from 0.5 to 5 ml/min. Two different inlet shapes: (i) straight entry at the centre (Design 1) and (ii) entry with an expansion (Design 2) were simulated to evaluate shear stress distribution. Also, mimicking bladder shape of two inlets (Design 3) was tested. Design 2 provided the uniform shear stress at the inlet and nutrient distribution, which was further investigated for the effect of scaffold locations within the reactor: (i) attached with a 3-mm open channel (Design 2-A), (ii) flow through with no open channel (Design 2-B) and (iii) porous structure suspended in the middle with 1.5-mm open channel on either side (Design 2-C). In Design 2-A and 2-C, fluid flow occurred by diffusion dominant mechanisms. Furthermore, the designed bioreactor is suitable for increased cell density of SMCs. These results showed that increasing the flow rate is necessary due to the decreased permeability at cell densities similar to the human bladder.
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2011.641177 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:16:y:2013:i:8:p:840-851
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2011.641177
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().