EconPapers    
Economics at your fingertips  
 

A finite element analysis of the vibration behaviour of a cementless hip system

M.A. Pérez and B. Seral-García

Computer Methods in Biomechanics and Biomedical Engineering, 2013, vol. 16, issue 9, 1022-1031

Abstract: An early diagnosis of aseptic loosening of a total hip replacement (THR) by plain radiography, scintigraphy or arthography has been shown to be less reliable than using a vibration technique. However, it has been suggested that it may be possible to distinguish between a secure and a loose prosthesis using a vibration technique. In fact, vibration analysis methods have been successfully used to assess dental implant stability, to monitor fracture healing and to measure bone mechanical properties. Several studies have combined the vibration technique with the finite element (FE) method in order to better understand the events involved in the experimental technique. In the present study, the main goal is to simulate the change in the resonance frequency during the osseointegration process of a cementless THR (Zweymüller). The FE method was used and a numerical modal analysis was conducted to obtain the natural frequencies and mode shapes under vibration. The effects were studied of different bone and stem material properties, and different contact conditions at the bone–implant interface. The results were in agreement with previous experimental and computational observations, and differences among the different cases studied were detected. As the osseointegration process at the bone–implant interface evolved, the resonance frequency values of the femur–prosthesis system also increased. In summary, vibration analysis combined with the FE method was able to detect different boundary conditions at the bone–implant interface in cases of both osseointegration and loosening.

Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2011.650635 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:16:y:2013:i:9:p:1022-1031

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2011.650635

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:16:y:2013:i:9:p:1022-1031