Cartesian stiffness for wrist joints: analysis on the Lie group of 3D rotations and geometric approximation for experimental evaluation
Domenico Campolo
Computer Methods in Biomechanics and Biomedical Engineering, 2013, vol. 16, issue 9, 975-986
Abstract:
This paper is concerned with the analysis and the numerical evaluation from experimental measurements of the static, Cartesian stiffness of wrist joints, in particular the human wrist. The primary aim is to extend from Euclidean spaces to so(3), the group of rigid body rotations, previous methods for assessing the end-point stiffness of the human arm, typically performed via a robotic manipulandum. As a first step, the geometric definition of Cartesian stiffness from current literature is specialised to the group so(3). Emphasis is placed on the choice of the unique, natural, affine connection on so(3) which guarantees symmetry of the stiffness matrix in presence of conservative fields for any configuration, also out of equilibrium. As the main contribution of this study, a coordinate-independent approximation based on the geometric notion of geodesics is proposed which provides a working equation for evaluating stiffness directly from experimental measurements. Finally, a graphical representation of the stiffness is discussed which extends the ellipse method often used for end-point stiffness visualisation and which is suitable to compare stiffness matrices evaluated at different configurations.
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2011.646392 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:16:y:2013:i:9:p:975-986
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2011.646392
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().