EconPapers    
Economics at your fingertips  
 

Towards reducing impact-induced brain injury: lessons from a computational study of army and football helmet pads

William C. Moss, Michael J. King and Eric G. Blackman

Computer Methods in Biomechanics and Biomedical Engineering, 2014, vol. 17, issue 11, 1173-1184

Abstract: We use computational simulations to compare the impact response of different football and U.S. Army helmet pad materials. We conduct experiments to characterise the material response of different helmet pads. We simulate experimental helmet impact tests performed by the U.S. Army to validate our methods. We then simulate a cylindrical impactor striking different pads. The acceleration history of the impactor is used to calculate the head injury criterion for each pad. We conduct sensitivity studies exploring the effects of pad composition, geometry and material stiffness. We find that (1) the football pad materials do not outperform the currently used military pad material in militarily relevant impact scenarios; (2) optimal material properties for a pad depend on impact energy and (3) thicker pads perform better at all velocities. Although we considered only the isolated response of pad materials, not entire helmet systems, our analysis suggests that by using larger helmet shells with correspondingly thicker pads, impact-induced traumatic brain injury may be reduced.

Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2012.739162 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:17:y:2014:i:11:p:1173-1184

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2012.739162

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:17:y:2014:i:11:p:1173-1184