A biochemical strategy for simulation of endochondral and intramembranous ossification
Diego A. Garzón-Alvarado
Computer Methods in Biomechanics and Biomedical Engineering, 2014, vol. 17, issue 11, 1237-1247
Abstract:
Following the assumption that parathyroid hormone related protein and Indian hedgehog form a biochemical regulatory loop for the endochondral process and bone morphogenetic protein 2 and Noggin in the intramembranous process, this paper implements these regulatory mechanisms. For this purpose, we use a set of reaction–diffusion equations that are widely used in morphogenesis, in which biochemical factors are assumed to be secreted by precursor cells, mesenchymal cells and chondrocytes, in endochondral and intramembranous ossification, respectively. The solution leads to the so-called Turing patterns, which represent these processes of ossification in a very approximate way.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2012.741597 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:17:y:2014:i:11:p:1237-1247
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2012.741597
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().