A comparative study of muscle force estimates using Huxley's and Hill's muscle model
Michala Cadova,
Miloslav Vilimek and
Matej Daniel
Computer Methods in Biomechanics and Biomedical Engineering, 2014, vol. 17, issue 4, 311-317
Abstract:
Determination of muscle forces in individual muscles is often essential to assess optimal performance of human motion. Inverse dynamic methods based on the kinematics of the given motion and on the use of optimisation approach are the most widely used for muscle force estimation. The aim of this study was to estimate how the choice of muscle model influences predicted muscle forces. Huxley's (1957, Prog Biophys Biop Chem. 7: 255–318) and Hill's (1938, Proc R Soc B. 126: 136–195) muscle models were used for determination of muscle forces of two antagonistic muscles of the lower extremity during cycling. Huxley's model is a complex model that couples biochemical and physical processes with the microstructure of the muscle whereas the Hill's model is a phenomenological model. Muscle forces predicted by both models are within the same range. Huxley's model predicts more realistic patterns of muscle activation but it is computationally more demanding. Therefore, if the overall muscle forces are to be assessed, it is reasonable to use a simpler implementation based on Hill's model.
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2012.683426 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:17:y:2014:i:4:p:311-317
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2012.683426
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().