EconPapers    
Economics at your fingertips  
 

An innovative numerical approach to resolve the pulse wave velocity in a healthy thoracic aorta model

An-Shik Yang, Chih-Yung Wen, Li-Yu Tseng, Chih-Chieh Chiang, Wen-Yih Isaac Tseng and Hsi-Yu Yu

Computer Methods in Biomechanics and Biomedical Engineering, 2014, vol. 17, issue 5, 461-473

Abstract: Aortic dissection and atherosclerosis are highly fatal diseases. The development of both diseases is closely associated with highly complex haemodynamics. Thus, in predicting the onset of cardiac disease, it is desirable to obtain a detailed understanding of the flowfield characteristics in the human cardiovascular circulatory system. Accordingly, in this study, a numerical model of a normal human thoracic aorta is constructed using the geometry information obtained from a phase-contrast magnetic resonance imaging (PC-MRI) technique. The interaction between the blood flow and the vessel wall dynamics is then investigated using a coupled fluid–structure interaction (FSI) analysis. The simulations focus specifically on the flowfield characteristics and pulse wave velocity (PWV) of the blood flow. Instead of using a conventional PC-MRI method to measure PWV, we present an innovative application of using the FSI approach to numerically resolve PWV for the assessment of wall compliance in a thoracic aorta model. The estimated PWV for a normal thoracic aorta agrees well with the results obtained via PC-MRI measurement. In addition, simulations which consider the FSI effect yield a lower predicted value of the wall shear stress at certain locations in the cardiac cycle than models which assume a rigid vessel wall. Consequently, the model provides a suitable basis for the future development of more sophisticated methods capable of performing the computer-aided analysis of aortic blood flows.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2012.691476 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:17:y:2014:i:5:p:461-473

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2012.691476

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:17:y:2014:i:5:p:461-473