EconPapers    
Economics at your fingertips  
 

Numerical investigation of oxygen mass transfer in a helical-type artery bypass graft

Tinghui Zheng, Jun Wen, Wentao Jiang, Xiaoyan Deng and Yubo Fan

Computer Methods in Biomechanics and Biomedical Engineering, 2014, vol. 17, issue 5, 549-559

Abstract: Local oxygen lack in arterial walls (hypoxia) plays a very important role in the initiation, progression and development of intimal hyperplasia (IH) and thrombosis. Aiming to find out whether a helical-type artery bypass graft (ABG) is hypoxia beneficial, a numerical study was carried out to compare oxygen transport between a helical-type ABG and a conventional-type ABG. The dimensionless mass transfer coefficient (Sherwood number) was introduced to evaluate the oxygen mass transfer distribution and detailed oxygen wall flux was computed. The results show that the intrinsic geometry of a helical-type ABG resulted in improved hypoxia and the oxygen-depleted fluid located proximally to the occluded section as compared with that of a conventional-type ABG. However, benefits aside, distinct double low regions (low wall shear stress (WSS) and hypoxia) which might be most prone to IH and more localised and thicker boundary layer of oxygen-depleted fluid were observed at the helical-type ABG. This may explain why the helical flow plays a detrimental role at some locations in the human body. In addition, it was observed that although low WSS region was always accompanied with low oxygen supply, the oxygen transport rate did not adjust simultaneously with flow. The change in oxygen distribution usually lagged behind the flow change. A physiological WSS region may be associated with hypoxia condition. This study captured the qualitative trend of oxygen distribution in ABGs and the effect of helical geometry on reducing hypoxia, which is useful in the structural design of swirling flow vascular devices.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2012.702764 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:17:y:2014:i:5:p:549-559

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2012.702764

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:17:y:2014:i:5:p:549-559