A pre-operative planning for endoprosthetic human tracheal implantation: a decision support system based on robust design of experiments
O. Trabelsi,
J.L. López Villalobos,
A. Ginel,
E. Barrot Cortes and
M. Doblaré
Computer Methods in Biomechanics and Biomedical Engineering, 2014, vol. 17, issue 7, 750-767
Abstract:
Swallowing depends on physiological variables that have a decisive influence on the swallowing capacity and on the tracheal stress distribution. Prosthetic implantation modifies these values and the overall performance of the trachea. The objective of this work was to develop a decision support system based on experimental, numerical and statistical approaches, with clinical verification, to help the thoracic surgeon in deciding the position and appropriate dimensions of a Dumon prosthesis for a specific patient in an optimal time and with sufficient robustness. A code for mesh adaptation to any tracheal geometry was implemented and used to develop a robust experimental design, based on the Taguchi's method and the analysis of variance. This design was able to establish the main swallowing influencing factors. The equations to fit the stress and the vertical displacement distributions were obtained. The resulting fitted values were compared to those calculated directly by the finite element method (FEM). Finally, a checking and clinical validation of the statistical study were made, by studying two cases of real patients. The vertical displacements and principal stress distribution obtained for the specific tracheal model were in agreement with those calculated by FE simulations with a maximum absolute error of 1.2 mm and 0.17 MPa, respectively. It was concluded that the resulting decision support tool provides a fast, accurate and simple tool for the thoracic surgeon to predict the stress state of the trachea and the reduction in the ability to swallow after implantation. Thus, it will help them in taking decisions during pre-operative planning of tracheal interventions.
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2012.715639 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:17:y:2014:i:7:p:750-767
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2012.715639
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().