EconPapers    
Economics at your fingertips  
 

Modelling of global boundary effects on harmonic motion imaging of soft tissues

Xiaodong Zhao and Assimina A. Pelegri

Computer Methods in Biomechanics and Biomedical Engineering, 2014, vol. 17, issue 9, 1021-1031

Abstract: Biomechanical imaging techniques have been developed for soft tissue characterisation and detection of breast tumours. Harmonic motion imaging (HMI) uses a focused ultrasound technology to generate a harmonic radiation force in a localised region inside a soft tissue. The resulting dynamic response is used to map the local distribution of the mechanical properties of the tissue. In this study, a finite element (FE) model is developed to investigate the effect of global boundary conditions on the dynamic response of a soft tissue during HMI. The direct-solution steady-state dynamic analysis procedure is used to compute the harmonic displacement amplitude in FE simulations. The model is parameterised in terms of boundary conditions and viscoelastic properties, and the corresponding raster-scan displacement amplitudes are captured to examine its response. The effect of the model's global dimensions on the harmonic response is also investigated. It is observed that the dynamic response of soft tissue with high viscosity is independent of the global boundary conditions for regions remote to the boundary; thus, it can be subjected to local analysis to estimate the underlying mechanical properties. However, the dynamic response is sensitive to global boundary conditions for tissue with low viscosity or regions located near to the boundary.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2012.736500 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:17:y:2014:i:9:p:1021-1031

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2012.736500

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:17:y:2014:i:9:p:1021-1031