EconPapers    
Economics at your fingertips  
 

A novel method to evaluate error in anatomical marker placement using a modified generalized Procrustes analysis

Sean T. Osis, Blayne A. Hettinga, Shari L. Macdonald and Reed Ferber

Computer Methods in Biomechanics and Biomedical Engineering, 2015, vol. 18, issue 10, 1108-1116

Abstract: As biomechanical research evolves, a continuing challenge is the standardization of data collection and analysis techniques. In gait analysis, placement of markers to construct an anatomical model has been identified as the single greatest source of error; however, there is currently no standardized approach to quantifying these errors. The current study applies morphometric methods, including a generalized Procrustes analysis (GPA) and a nearest neighbour comparison to quantify discrepancies in marker placement, with the goal of improving reliability in gait analysis. An extensive data-set collected by an Expert (n = 340) was used to evaluate marker placements performed by a Novice (n = 55). Variances identified through principal component analysis were used to create a modified GPA to transform anatomical data, and scaled coordinates from the Novice data-set were then scored against the Expert subset. The results showed quantitative differences in marker placement, suggesting that, although training improved consistency, systematic biases remained.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2013.873034 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:18:y:2015:i:10:p:1108-1116

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2013.873034

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:18:y:2015:i:10:p:1108-1116