Numerical investigations of the mechanical properties of a braided non-vascular stent design using finite element method
Xiao-Yu Ni,
Chang-Wang Pan and
B. Gangadhara Prusty
Computer Methods in Biomechanics and Biomedical Engineering, 2015, vol. 18, issue 10, 1117-1125
Abstract:
This paper discusses various issues relating to the mechanical properties of a braided non-vascular stent made of a Ni–Ti alloy. The design of the stent is a major factor which determines its reliability after implantation into a stenosed non-vascular cavity. This paper presents the effect of the main structural parameters on the mechanical properties of braided stents. A parametric analysis of a commercial stent model is developed using the commercial finite element code ANSYS. As a consequence of the analytical results that the pitch of wire has a greater effect than other structural parameters, a new design of a variable pitch stent is presented to improve mechanical properties of these braided stents. The effect of structural parameters on mechanical properties is compared for both stent models: constant and variable pitches. When the pitches of the left and right quarters of the stent are 50% larger and 100% larger than that of the central portion, respectively, the radial stiffness in the central portion increases by 10% and 38.8%, while the radial stiffness at the end portions decreases by 128% and 164.7%, the axial elongation by 25.6% and 56.6% and the bending deflection by 3.96% and 10.15%. It has been demonstrated by finite element analysis that the variable pitch stent can better meet the clinical requirements.
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2013.873420 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:18:y:2015:i:10:p:1117-1125
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2013.873420
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().