EconPapers    
Economics at your fingertips  
 

Finite element assessment of block-augmented total knee arthroplasty

B. Frehill, A.D. Crocombe, Y. Agarwal and W.N. Bradley

Computer Methods in Biomechanics and Biomedical Engineering, 2015, vol. 18, issue 15, 1726-1736

Abstract: Loosening and migration of tibial prostheses have been identified as causes of early total knee replacement (TKR) failure. The problem is made more complex when defects occur in the proximal tibia compromising fixation and alignment. Clinical studies using metal augments have shown these to be an alternative to other means of defect treatment. Finite element (FE) analysis can be used to identify regions that may be prone to loosening and migration. In the current work, 3D FE models of TKR uncontained type-2 defects treated with block augments have been constructed and analysed. It has been shown that a metal augment is the most suitable. The use of bone cement (PMMA) to fill proximal defects is not considered suitable as stresses carried by the cement block exceed those of the fatigue limit of bone cement. It has been shown that the stresses in the proximal cancellous bone of block-augmented models are significantly below levels likely to cause damage due to overloading. Furthermore, the use of stem extensions has been shown to reduce the cancellous bone stresses in the proximal region thus increasing the likelihood of bone resorption. Given this, it is recommended that stem extensions are not required unless necessary to mitigate some other problem.

Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2014.948429 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:18:y:2015:i:15:p:1726-1736

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2014.948429

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:18:y:2015:i:15:p:1726-1736