EconPapers    
Economics at your fingertips  
 

Neuromechanical control of the forearm muscles during gripping with sudden flexion and extension wrist perturbations

Michael W.R. Holmes, Jimmy Tat and Peter J. Keir

Computer Methods in Biomechanics and Biomedical Engineering, 2015, vol. 18, issue 16, 1826-1834

Abstract: The purpose of this study was to investigate how gripping modulates forearm muscle co-contraction prior to and during sudden wrist perturbations. Ten males performed a sub-maximal gripping task (no grip, 5% and 10% of maximum) while a perturbation forced wrist flexion or extension. Wrist joint angles and activity from 11 muscles were used to determine forearm co-contraction and muscle contributions to wrist joint stiffness. Co-contraction increased in all pairs as grip force increased (from no grip to 10% grip), corresponding to a 36% increase in overall wrist joint stiffness. Inclusion of individual muscle contributions to wrist joint stiffness enhanced the understanding of forearm co-contraction. The extensor carpi radialis longus (ECRL) and brevis had the largest stiffness contributions (34.5 ± 1.3% and 20.5 ± 2.3%, respectively), yet muscle pairs including ECRL produced the lowest co-contraction. The muscles contributing most to wrist stiffness were consistent across conditions (ECRL for extensors; Flexor Digitorum Superficialis for flexors), suggesting enhanced contributions rather than muscular redistribution. This work provides investigation of the neuromuscular response to wrist perturbations and gripping demands by considering both co-contraction and muscle contributions to joint stiffness. Individual muscle stiffness contributions can be used to enhance the understanding of forearm muscle control during complex tasks.

Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2014.976811 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:18:y:2015:i:16:p:1826-1834

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2014.976811

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:18:y:2015:i:16:p:1826-1834