Elucidating the scapulo-humeral rhythm calculation: 3D joint contribution method
Xavier Robert-Lachaine,
Patrick Marion,
Véronique Godbout,
Jacinte Bleau and
Mickael Begon
Computer Methods in Biomechanics and Biomedical Engineering, 2015, vol. 18, issue 3, 249-258
Abstract:
The scapulo-humeral rhythm quantifies shoulder joint coordination during arm elevation. The common method calculates a ratio of gleno-humeral (GH) elevation to scapulo-thoracic upward rotation angles. However the other rotations also contribute to arm elevation. The objective is to propose a 3D dynamic scapulo-humeral rhythm calculation method including all rotations of the shoulder joints and compare with the common method. Twenty-nine skin markers were placed on the trunk and dominant arm of 14 healthy males to measure shoulder kinematics. Two-way repeated measures ANOVAs were applied to compare the two methods of calculation of joint contributions and scapulo-humeral rhythm during arm elevation. Significant main effects (p < 0.05) were observed between methods in joint contribution angles and scapulo-humeral rhythms. A systematic overestimation of the GH contribution was observed when only using the GH elevation angle because the scapula is moved outside a vertical plane. Hence, the proposed 3D method to calculate the scapulo-humeral rhythm allows an improved functional shoulder evaluation.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2013.792810 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:18:y:2015:i:3:p:249-258
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2013.792810
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().