Role of differential adhesion in cell cluster evolution: from vasculogenesis to cancer metastasis
Jaykrishna Singh,
Fazle Hussain and
Paolo Decuzzi
Computer Methods in Biomechanics and Biomedical Engineering, 2015, vol. 18, issue 3, 282-292
Abstract:
Cell–cell and cell–matrix adhesions are fundamental to numerous physiological processes, including angiogenesis, tumourigenesis, metastatic spreading and wound healing. We use cellular potts model to computationally predict the organisation of cells within a 3D matrix. The energy potentials regulating cell–cell (JCC) and cell–matrix (JMC) adhesive interactions are systematically varied to represent different, biologically relevant adhesive conditions. Chemotactically induced cell migration is also addressed. Starting from a cluster of cells, variations in relative cell adhesion alone lead to different cellular patterns such as spreading of metastatic tumours and angiogenesis. The combination of low cell–cell adhesion (high JCC) and high heterotypic adhesion (low JMC) favours the fragmentation of the original cluster into multiple, smaller cell clusters (metastasis). Conversely, cellular systems exhibiting high-homotypic affinity (low JCC) preserve their original configuration, avoiding fragmentation (organogenesis). For intermediate values of JCC and JMC (i.e. JCC/JMC ∼ 1), tubular and corrugated structures form. Fully developed vascular trees are assembled only in systems in which contact-inhibited chemotaxis is activated upon cell contact. Also, the rate of secretion, diffusion and sequestration of chemotactic factors, cell deformability and motility do not significantly affect these trends. Further developments of this computational model will predict the efficacy of therapeutic interventions to modulate the diseased microenvironment by directly altering cell cohesion.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2013.792917 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:18:y:2015:i:3:p:282-292
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2013.792917
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().