A semi-automated method for patient-specific computational flow modelling of left ventricles
Vinh-Tan Nguyen,
Chong Jia Loon,
Hoang Huy Nguyen,
Zhong Liang and
Hwa Liang Leo
Computer Methods in Biomechanics and Biomedical Engineering, 2015, vol. 18, issue 4, 401-413
Abstract:
Patient-specific computational fluid dynamics (CFD) modelling of the left ventricle (LV) is a promising technique for the visualisation of ventricular flow patterns throughout a cardiac cycle. While significant progress has been made in improving the physiological quality of such simulations, the methodologies involved for several key steps remain significantly operator-dependent to this day. This dependency limits both the efficiency of the process as well as the consistency of CFD results due to the labour-intensive nature of current methods as well as operator introduced uncertainties in the modelling process. In order to mitigate this dependency, we propose a semi-automated method for patient-specific computational flow modelling of the LV. Using magnetic resonance imaging derived coarse geometry data of a patient's LV endocardium shape throughout a cardiac cycle, we then proceed to refine the geometry to eliminate rough edges before reconstructing meshes for all time frames and finally numerically solving for the intra-ventricular flow. Using a sample of patient-specific volunteer data, we demonstrate that our semi-automated, minimal operator involvement approach is capable of yielding CFD results of the LV that are comparable to other clinically validated LV flow models in the literature.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2013.803534 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:18:y:2015:i:4:p:401-413
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2013.803534
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().