EconPapers    
Economics at your fingertips  
 

Deriving indicators for breast conserving surgery using finite element analysis

D. Thanoon, M. Garbey and B.L. Bass

Computer Methods in Biomechanics and Biomedical Engineering, 2015, vol. 18, issue 5, 533-544

Abstract: Breast conserving therapy (BCT), comprising a complete surgical excision of the tumour (partial mastectomy) with post-operative radiotherapy to the remaining breast tissue, is feasible for most women undergoing treatment for breast cancer. The goal of BCT is to achieve local control of the cancer, as well as to preserve a breast that satisfies a woman's cosmetic concerns. Although most women undergo partial mastectomy with satisfactory cosmetic results, in many patients the remaining breast is left with major cosmetic defects including concave deformities, distortion of the nipple–areolar complex, asymmetry and changes in tissue density characterised by excessive density associated with parenchymal scarring, as well as breast pain. There are currently no tools, other than surgical experience and judgement, which can predict the impact of partial mastectomy on the contour, the deformity of the treated breast and the mechanical stress that it induces. In this study, we use a finite element model to execute virtual surgery and carry out a sensitivity analysis on the resection location, the resection size, the breast tissue mechanical property and the different post-surgery recovery stage. We output the result in two different built-in indicators labelled as the cosmetic and the functional indicators. This study used the breast model for three women with breast cancer who have been elected to undergo BCT and are being treated at the Methodist Hospital in Houston, TX. The goal of this study was to propose a first glimpse of the key parameter leading to satisfactory post-BCT cosmetic results.

Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2013.820716 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:18:y:2015:i:5:p:533-544

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2013.820716

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:18:y:2015:i:5:p:533-544