Numerical model (switchable/dual model) of the human head for rigid body and finite elements applications
Stefan Tabacu
Computer Methods in Biomechanics and Biomedical Engineering, 2015, vol. 18, issue 7, 769-781
Abstract:
In this paper, a methodology for the development and validation of a numerical model of the human head using generic procedures is presented. All steps required, starting with the model generation, model validation and applications will be discussed. The proposed model may be considered as a dual one due to its capabilities to switch from deformable to a rigid body according to the application's requirements. The first step is to generate the numerical model of the human head using geometry files or medical images. The required stiffness and damping for the elastic connection used for the rigid body model are identified by performing a natural frequency analysis. The presented applications for model validation are related to impact analysis. The first case is related to Nahum's (Nahum and Smith 1970) experiments pressure data being evaluated and a pressure map generated using the results from discrete elements. For the second case, the relative displacement between the brain and the skull is evaluated according to Hardy's (Hardy WH, Foster CD, Mason, MJ, Yang KH, King A, Tashman S. 2001.Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J. 45:337–368, SAE Paper 2001-22-0016) experiments. The main objective is to validate the rigid model as a quick and versatile tool for acquiring the input data for specific brain analyses.
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2013.847092 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:18:y:2015:i:7:p:769-781
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2013.847092
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().