An optimisation-based model for full-body upright reaching movements
Daohang Sha and
James S. Thomas
Computer Methods in Biomechanics and Biomedical Engineering, 2015, vol. 18, issue 8, 847-860
Abstract:
An optimal simulation 3D model for full-body upright reaching movements was developed using graphic-based modelling tools (SimMechanics) to generate an inverse dynamics model of the skeleton and using parameterisation methods for a sensory motor controller. The adaptive weight coefficient of the cost function based on the final motor task error (i.e. distance between end-effector and target at the end of movement) was used to correct motor task error and physiological measurements (e.g. joint power, centre of mass displacement, etc.). The output of the simulation models using various cost functions were compared to experimental data from 15 healthy participants performing full-body upright reaching movements. The proposed method can reasonably predict full-body voluntary movements in terms of final posture, joint power, and movement of the centre of mass (COM) using simple algebraic calculations of inverse dynamics and forward kinematics instead of the complicated integrals of the forward dynamics. We found that the combination of several control strategies, i.e. minimising end-effector error, total joint power and body COM produced the best fit of the full-body reaching task.
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2013.850675 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:18:y:2015:i:8:p:847-860
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2013.850675
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().