EconPapers    
Economics at your fingertips  
 

Mechanism of lens capsular rupture following blunt trauma: a finite element study

Xiaoyu Liu, Lizhen Wang, Chengfei Du, Deyu Li and Yubo Fan

Computer Methods in Biomechanics and Biomedical Engineering, 2015, vol. 18, issue 8, 914-921

Abstract: Blunt impact on the eye could results in lens capsular rupture that allows foreign substances to enter into the lens and leads to cataract formation. This paper aimed to investigate the mechanism of lens capsular rupture using finite element (FE) method. A FE model of the human eye was developed to simulate dynamic response of the lens capsule to a BB (a standard 4.5-mm-diameter pellet) impact. Sensitivity studies were conducted to evaluate the effect of the parameters on capsular rupture, including the impact velocity, the elastic modulus of the lens, the thickness and the elastic modulus of the lens capsule. The results indicated that the lens was subjected to anterior compression and posterior intension when the eye was stricken by a BB pellet. The strain on the posterior capsule (0.392) was almost twice as much as that on the anterior capsule (0.207) at an impact velocity of 20 m/s. The strain on the capsule was proportional to the impact velocity, while the capsular strain showed no significant change when the lens modulus elastic varied with age. The findings confirmed that blunt traumatic capsular rupture is the result of shockwave propagation throughout the eye. The posterior capsule is subjected to greater tension in blunt trauma, which is the main cause that ruptures are more commonly found on the posterior capsule than the anterior capsule. Also, thinner thickness and lower elastic modulus would contribute to the posterior capsular rupture.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2014.975798 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:18:y:2015:i:8:p:914-921

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2014.975798

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:18:y:2015:i:8:p:914-921