EconPapers    
Economics at your fingertips  
 

Quantitative MRI water content mapping of porcine intervertebral disc during uniaxial compression

M. Ghiss, B. Giannesini, P. Tropiano, Z. Tourki and O. Boiron

Computer Methods in Biomechanics and Biomedical Engineering, 2016, vol. 19, issue 10, 1079-1088

Abstract: Background: Intervertebral disc (IVD) diseases are major public health problem in industrialized countries where they affect a large proportion of the population. In particular, IVD degeneration is considered to be one of the leading causes of pain consultation and sick leave. The aim of this study was to develop a new method for assessing the functionality of IVD in order to diagnose IVD degeneration. Methods: For this purpose, we have designed a specific device that enables to mechanically load porcine IVD ex vivo in the 4.7-Tesla horizontal superconducting magnet of a magnetic resonance (MR) scanner. Proton density weighted imaging (ρH-MRI) of the samples was acquired. Findings: The post-processing on MR images allowed (1) to reconstruct the 3D deformation under a known mechanical load and (2) to infer the IVD porosity assuming an incompressible poroelastic model. Interpretation: This study demonstrates the ability to follow the change in morphology and hydration of an IVD using MR measurements, thereby providing valued information for a better understanding of IVD function.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2015.1101072 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:19:y:2016:i:10:p:1079-1088

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2015.1101072

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:19:y:2016:i:10:p:1079-1088