EconPapers    
Economics at your fingertips  
 

Numerical simulation of iontophoresis in the drug delivery system

Nenad Filipovic, Marko Zivanovic, Andrej Savic and Goran Bijelic

Computer Methods in Biomechanics and Biomedical Engineering, 2016, vol. 19, issue 11, 1154-1159

Abstract: The architecture and composition of stratum corneum act as barriers and limit the diffusion of most drug molecules and ions. Much effort has been made to overcome this barrier and it can be seen that iontophoresis has shown a good effect. Iontophoresis represents the application of low electrical potential to increase the transport of drugs into and across the skin or tissue. Iontophoresis is a noninvasive drug delivery system, and therefore, it is a useful alternative to drug transportation by injection. In this study, we present a numerical model and effects of electrical potential on the drug diffusion in the buccal tissue and the stratum corneum. The initial numerical results are in good comparison with experimental observation. We demonstrate that the application of an applied voltage can greatly improve the efficacy of localized drug delivery as compared to diffusion alone.

Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2015.1115021 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:19:y:2016:i:11:p:1154-1159

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2015.1115021

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:19:y:2016:i:11:p:1154-1159