EconPapers    
Economics at your fingertips  
 

Changes to the geometry and fluid mechanics of the carotid siphon in the pediatric Moyamoya disease

Muhammad Jamil, Germaine Xin Yi Tan, Mehnaz Huq, Heidi Kang, Zhi Rui Lee, Phua Hwee Tang, Xi Hong Hu and Choon Hwai Yap

Computer Methods in Biomechanics and Biomedical Engineering, 2016, vol. 19, issue 16, 1760-1771

Abstract: Background: The Moyamoya disease is a cerebrovascular disease that causes occlusion of the distal end of the internal carotid artery, leading to the formation of multiple tiny collateral arteries. To date, the pathogenesis of Moyamoya is unknown. Improved understanding of the changes to vascular geometry and fluid mechanics of the carotid siphon during disease may improve understanding of the pathogenesis, prognosis techniques and disease management. Methods: A retrospective analysis of Magnetic Resonance Angiography (MRA) images was performed for Moyamoya pediatric patients (MMD) (n = 23) and control (Ctrl) pediatric patients (n = 20). The Ctrl group was composed of patients who complained of headache and had normal MRA. We performed segmentation of MRA images to quantify geometric parameters of the artery. Computational fluid dynamics (CFD) was performed to quantify the hemodynamic parameters. Results: MMD internal carotid and carotid siphons were smaller in cross-sectional areas, and shorter in curved vascular length. Vascular curvature remained constant over age and vascular size and did not change between Ctrl and MMD, but MMD carotid siphon had lower tortuosity in the posterior bend, and higher torsion in the anterior bend. Wall shear stress and secondary flows were significantly lower in MMD, but the ratio of secondary flow kinetic energy to primary flow kinetic energy were similar between MMD and Ctrl. Conclusion: There were alterations to both the geometry and the flow mechanics of the carotid siphons of Moyamoya patients but it is unclear whether hemodynamics is the cause or the effect of morphological changes observed.

Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2016.1184655 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:19:y:2016:i:16:p:1760-1771

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2016.1184655

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:19:y:2016:i:16:p:1760-1771