Validation of the ‘FeMorph’ software in planning cam osteochondroplasty by incorporating labral morphology
Milad Masjedi,
Rakhee Mandalia,
Adeel Aqil and
Justin Cobb
Computer Methods in Biomechanics and Biomedical Engineering, 2016, vol. 19, issue 1, 67-73
Abstract:
Impingement resulting from a cam deformity may cause pain, limit the hip joint range of motion (RoM) and lead to osteoarthritis. We have previously developed FeMorph software to quantify and plan corrective surgery and predict hip RoM post surgery. This study aimed to validate the software and evaluate the influence of the acetabular labrum on hip RoM. Computed tomography data from 92 femur-pelvis pairs were analysed in conjunction with the inter/intra-observer reliability. Four cadaveric hips were dissected, and the three-dimensional (3D) shape and size of the acetabular labrum for these hips was obtained using laser scan. The influence of the acetabular labrum in the RoM and subsequent planning for corrective surgery were then evaluated in cadavers for models with and without a labrum, and used as a first step towards validation of FeMorph RoM prediction. FeMorph was successfully used to model cam deformities and plan corrective surgery. Three-dimensional alpha angles were reduced to below 50° after virtual surgery without an excessive reduction in femoral neck cross-sectional area, which could increase fracture risk. A mean increase of 8° ± 2° in permitted internal rotation was observed during impingement testing following removal of the labrum. FeMorph provides a reliable and useful method to model and plan cam deformity correction. This study indicates that the presence of the labrum is responsible for a substantial decrease in permitted internal rotation at the hip joint. This has implications for surgical planning models which often only account for bony impingement.
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2014.986654 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:19:y:2016:i:1:p:67-73
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2014.986654
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().