Acoustic simulation of a patient's obstructed airway
W.C.P. van der Velden,
A.H. van Zuijlen,
A.T. de Jong,
C.T. Lynch,
L.J. Hoeve and
H. Bijl
Computer Methods in Biomechanics and Biomedical Engineering, 2016, vol. 19, issue 2, 144-158
Abstract:
This research focuses on the numerical simulation of stridor; a high pitched, abnormal noise, resulting from turbulent airflow and vibrating tissue through a partially obstructed airway. Characteristics of stridor noise are used by medical doctors as indication for location and size of the obstruction. The relation between type of stridor and the various diseases associated with airway obstruction is unclear; therefore, simply listening to stridor is an unreliable diagnostic tool. The overall aim of the study is to better understand the relationship between characteristics of stridor noise and localization and size of the obstruction. Acoustic analysis of stridor may then in future simplify the diagnostic process, and reduce the need for more invasive procedures such as laryngoscopy under general anesthesia. In this paper, the feasibility of a coupled flow, acoustic and structural model is investigated to predict the noise generated by the obstruction as well as the propagation of the noise through the airways, taking into account a one-way coupled fluid, structure, and acoustic interaction components. The flow and acoustic solver are validated on a diaphragm and a simplified airway model. A realistic airway model of a patient suffering from a subglottic stenosis, derived from a real computed tomography scan, is further analyzed. Near the mouth, the broadband noise levels at higher frequencies increased with approximately 15–20 dB comparing the stridorous model with the healthy model, indicating stridorous sound.
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2014.996877 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:19:y:2016:i:2:p:144-158
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2014.996877
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().