EconPapers    
Economics at your fingertips  
 

Upper limb joint angle measurement in occupational health

Diego Álvarez, Juan C. Alvarez, Rafael C. González and Antonio M. López

Computer Methods in Biomechanics and Biomedical Engineering, 2016, vol. 19, issue 2, 159-170

Abstract: Usual human motion capture systems are designed to work in controlled laboratory conditions. For occupational health, instruments that can measure during normal daily life are essential, as the evaluation of the workers' movements is a key factor to reduce employee injury- and illness-related costs. In this paper, we present a method for joint angle measurement, combining inertial sensors (accelerometers and gyroscopes) and magnetic sensors. This method estimates wrist flexion, wrist lateral deviation, elbow flexion, elbow pronation, shoulder flexion, shoulder abduction and shoulder internal rotation. The algorithms avoid numerical integration of the signals, which allows for long-time estimations without angle estimation drift. The system has been tested both under laboratory and field conditions. Controlled laboratory tests show mean estimation errors between 0.06° and of 1.05°, and standard deviation between 2.18° and 9.20°. Field tests seem to confirm these results when no ferromagnetic materials are close to the measurement system.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2014.997718 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:19:y:2016:i:2:p:159-170

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2014.997718

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:19:y:2016:i:2:p:159-170