EconPapers    
Economics at your fingertips  
 

Influence of connection type on the biomechanical behavior of distal extension mandibular removable partial dentures supported by implants and natural teeth

Wei Xiao, Zhiyong Li, Shiqian Shen, Shaowu Chen, Sulin Chen and Jiawei Wang

Computer Methods in Biomechanics and Biomedical Engineering, 2016, vol. 19, issue 3, 240-247

Abstract: Few studies are performed to evaluate the influence of connection type on the stress distribution of distal extension mandibular removable partial dentures (RPDs) supported by both implants and natural teeth. In this study, five three-dimensional finite element models were prepared to simulate mandibular bilateral partially edentulous arches. Four were RPDs supported by both implants and natural teeth, and the other one was RPDs supported only by natural teeth. The maximum equivalent (EQV) stress values of bone around implants, the abutments, and the mucosa displacements of the related supporting structures were measured. It was found that a non-rigid telescopic coping was more favorable to protect the implant than a rigid telescopic coping. Compared with other connection types, the easy resilient attachment (ERA) system seemed to be effective to associate implant without complications. However, the results obtained in the present study should be cautiously interpreted in the clinic.

Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2015.1009450 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:19:y:2016:i:3:p:240-247

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2015.1009450

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:19:y:2016:i:3:p:240-247