Quantifying the internal deformation of the rodent spinal cord during acute spinal cord injury – the validation of a method
Tim Bhatnagar,
Jie Liu,
Andrew Yung,
Peter Cripton,
Piotr Kozlowski,
Wolfram Tetzlaff and
Thomas Oxland
Computer Methods in Biomechanics and Biomedical Engineering, 2016, vol. 19, issue 4, 386-395
Abstract:
Visualization and analysis of the rodent spinal cord subject to experimental spinal cord injury (SCI) has almost completely been limited to naked-eye observations, and a single measure of gross spinal cord motion due to injury. This study introduces a novel method which utilizes MRI to quantify the deformation of the rodent spinal cord due to imposed, clinically-relevant injuries – specifically, cervical contusion and dislocation mechanisms. The image registration methods were developed using the Advanced Normalization Tools package, which incorporate rigid, affine and deformable registration steps. The proposed method is validated against a fiducial-based, ‘gold-standard’ measure of spinal cord tissue motion. The validation analysis yielded accuracy (and precision) values of 62 μm (49 μm), 73 μm (79 μm) and 112 μm (110 μm), for the medio-lateral, dorso-ventral and cranio-caudal directions, respectively. The internal morphological change of the spinal cord has never before been quantified, experimentally. This study demonstrates the capability of this method and its potential for future application to in vivo rodent models of SCI.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2015.1032944 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:19:y:2016:i:4:p:386-395
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2015.1032944
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().