EconPapers    
Economics at your fingertips  
 

The sensitivity of nonlinear computational models of trabecular bone to tissue level constitutive model

Andrew P. Baumann, Xiutao Shi, Ryan K. Roeder and Glen L. Niebur

Computer Methods in Biomechanics and Biomedical Engineering, 2016, vol. 19, issue 5, 465-473

Abstract: Microarchitectural finite element models have become a key tool in the analysis of trabecular bone. Robust, accurate, and validated constitutive models would enhance confidence in predictive applications of these models and in their usefulness as accurate assays of tissue properties. Human trabecular bone specimens from the femoral neck (n = 3), greater trochanter (n = 6), and lumbar vertebra (n = 1) of eight different donors were scanned by μ-CT and converted to voxel-based finite element models. Unconfined uniaxial compression and shear loading were simulated for each of three different constitutive models: a principal strain-based model, Drucker–Lode, and Drucker–Prager. The latter was applied with both infinitesimal and finite kinematics. Apparent yield strains exhibited minimal dependence on the constitutive model, differing by at most 16.1%, with the kinematic formulation being influential in compression loading. At the tissue level, the quantities and locations of yielded tissue were insensitive to the constitutive model, with the exception of the Drucker–Lode model, suggesting that correlation of microdamage with computational models does not improve the ability to discriminate between constitutive laws. Taken together, it is unlikely that a tissue constitutive model can be fully validated from apparent-level experiments alone, as the calculations are too insensitive to identify differences in the outcomes. Rather, any asymmetric criterion with a valid yield surface will likely be suitable for most trabecular bone models.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2015.1041022 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:19:y:2016:i:5:p:465-473

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2015.1041022

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:19:y:2016:i:5:p:465-473