Computational modelling of mobile bearing TKA anterior–posterior dislocation
J.H. Müller,
T. Zakaria,
W. van der Merwe and
F. D'Angelo
Computer Methods in Biomechanics and Biomedical Engineering, 2016, vol. 19, issue 5, 549-562
Abstract:
Anterior–posterior stability in an unconstrained mobile-bearing total knee arthroplasty (TKA) and one with rotational constraints is compared in a computational model based on an ASTM test. Both TKA designs dislocate at loads greater than reported maximum in vivo forces. The posterior drawer forces (mean: 3027 N vs. 1817 N) needed to induce subluxation increase with a greater anterior jump distance (12 mm vs. 7 mm; refers to the vertical height of the anterior or posterior border of the tibial insert's articulating surface). The posterior jump distance for both tested TKA differed by 1.5 mm and had minimal effect on the magnitude of the anterior drawer forces at dislocation in mid-flexion (unconstrained vs. constrained: 445 N vs. 412 N). The unconstrained insert dislocated by means of spin-out whereas in the constrained TKA the femur dislocated from the bearing during posterior drawer and the bearing from the baseplate during anterior drawer. MCL function is an important consideration during ligament balancing since a ± 10% variation in MCL tension affects dislocation forces by ± 20%. The simulation platform provided the means to investigate TKA designs in terms of anterior–posterior stability as a function of knee flexion, collateral ligament function and mechanical morphology.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2015.1045499 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:19:y:2016:i:5:p:549-562
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2015.1045499
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().