EconPapers    
Economics at your fingertips  
 

Simulation of muscle and adipose tissue deformation in the passive human pharynx

Nicholas B. Carrigy, Jason P. Carey, Andrew R. Martin, John E. Remmers, Ali Zareian, Zbigniew Topor, Joshua Grosse, Michelle Noga and Warren H. Finlay

Computer Methods in Biomechanics and Biomedical Engineering, 2016, vol. 19, issue 7, 780-788

Abstract: Quantifying the contribution of passive mechanical deformation in the human pharynx to upper airway collapse is fundamental to understanding the competing biomechanical processes that maintain airway patency. This study uses finite element analysis to examine deformation in the passive human pharynx using an intricate 3D anatomical model based on computed tomography scan images. Linear elastic properties are assigned to bone, cartilage, ligament, tendon, and membrane structures based on a survey of values reported in the literature. Velopharyngeal and oropharyngeal cross-sectional area versus airway pressure slopes are determined as functions of Young's moduli of muscle and adipose tissue. In vivo pharyngeal mechanics for small deformations near atmospheric pressure are matched by altering Young's moduli of muscle and adipose tissue. The results indicate that Young's moduli ranging from 0.33 to 14 kPa for muscle and adipose tissue matched the in vivo range of area versus pressure slopes. The developed anatomical model and determined Young's moduli range are expected to be useful as a starting point for more complex simulations of human upper airway collapse and obstructive sleep apnea therapy.

Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2015.1062477 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:19:y:2016:i:7:p:780-788

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2015.1062477

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:19:y:2016:i:7:p:780-788