EconPapers    
Economics at your fingertips  
 

Patient-specific finite element model of the spine and spinal cord to assess the neurological impact of scoliosis correction: preliminary application on two cases with and without intraoperative neurological complications

Juan Henao, Carl-Éric Aubin, Hubert Labelle and Pierre-Jean Arnoux

Computer Methods in Biomechanics and Biomedical Engineering, 2016, vol. 19, issue 8, 901-910

Abstract: Scoliosis is a 3D deformation of the spine and rib cage. For severe cases, surgery with spine instrumentation is required to restore a balanced spine curvature. This surgical procedure may represent a neurological risk for the patient, especially during corrective maneuvers. This study aimed to computationally simulate the surgical instrumentation maneuvers on a patient-specific biomechanical model of the spine and spinal cord to assess and predict potential damage to the spinal cord and spinal nerves. A detailed finite element model (FEM) of the spine and spinal cord of a healthy subject was used as reference geometry. The FEM was personalized to the geometry of the patient using a 3D biplanar radiographic reconstruction technique and 3D dual kriging. Step by step surgical instrumentation maneuvers were simulated in order to assess the neurological risk associated to each maneuver. The surgical simulation methodology implemented was divided into two parts. First, a global multi-body simulation was used to extract the 3D displacement of six vertebral landmarks, which were then introduced as boundary conditions into the personalized FEM in order to reproduce the surgical procedure. The results of the FEM simulation for two cases were compared to published values on spinal cord neurological functional threshold. The efficiency of the reported method was checked considering one patient with neurological complications detected during surgery and one control patient. This comparison study showed that the patient-specific hybrid model reproduced successfully the biomechanics of neurological injury during scoliosis correction maneuvers.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2015.1075010 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:19:y:2016:i:8:p:901-910

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2015.1075010

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:19:y:2016:i:8:p:901-910