EconPapers    
Economics at your fingertips  
 

Assessment of physical activity of the human body considering the thermodynamic system

Stefan Hochstein, Philipp Rauschenberger, Bernhard Weigand, Tobias Siebert, Syn Schmitt, Wolfgang Schlicht, Světlana Převorovská and František Maršík

Computer Methods in Biomechanics and Biomedical Engineering, 2016, vol. 19, issue 9, 923-933

Abstract: Correctly dosed physical activity is the basis of a vital and healthy life, but the measurement of physical activity is certainly rather empirical resulting in limited individual and custom activity recommendations. Certainly, very accurate three-dimensional models of the cardiovascular system exist, however, requiring the numeric solution of the Navier–Stokes equations of the flow in blood vessels. These models are suitable for the research of cardiac diseases, but computationally very expensive. Direct measurements are expensive and often not applicable outside laboratories. This paper offers a new approach to assess physical activity using thermodynamical systems and its leading quantity of entropy production which is a compromise between computation time and precise prediction of pressure, volume, and flow variables in blood vessels. Based on a simplified (one-dimensional) model of the cardiovascular system of the human body, we develop and evaluate a setup calculating entropy production of the heart to determine the intensity of human physical activity in a more precise way than previous parameters, e.g. frequently used energy considerations. The knowledge resulting from the precise real-time physical activity provides the basis for an intelligent human–technology interaction allowing to steadily adjust the degree of physical activity according to the actual individual performance level and thus to improve training and activity recommendations.

Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2015.1076804 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:19:y:2016:i:9:p:923-933

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2015.1076804

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:19:y:2016:i:9:p:923-933