EconPapers    
Economics at your fingertips  
 

Statistical factorial analysis approach for parameter calibration on material nonlinearity of intervertebral disc finite element model

Masni-Azian and Masao Tanaka

Computer Methods in Biomechanics and Biomedical Engineering, 2017, vol. 20, issue 10, 1066-1076

Abstract: In the biomechanics field, material parameters calibration is significant for finite element (FE) model to ensure a legit estimation of biomechanical response. Determining an appropriate combination of calibration factors is challenging as each constitutive component responds differently. This study proposes a statistical factorial analysis approach using L16(45) orthogonal array to evaluate material nonlinearity and applicable calibration factor of the intervertebral disc FE model in pure moment. The calibrated model exhibits improved agreement to the experimental findings for all directions. Appropriate combination of calibration parameter reduces the estimation gap to the experimental findings, ensuring agreeable biomechanical responses.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2017.1331345 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:20:y:2017:i:10:p:1066-1076

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2017.1331345

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:20:y:2017:i:10:p:1066-1076