Biomechanical analysis of the Universal 2 implant in total wrist arthroplasty: a finite element study
M. K. Gislason,
E. Foster,
M. Bransby-Zachary and
D. H. Nash
Computer Methods in Biomechanics and Biomedical Engineering, 2017, vol. 20, issue 10, 1113-1121
Abstract:
Little is known about the mechanics of in vivo loading on total wrist prostheses where many studies have looked at the mechanics of other types of arthroplasty such as for the hip and the knee which has contributed to the overall success of these types of procedures. Currently surgeons would prefer to carry out arthrodesis on the wrist rather than consider arthroplasty as clinical data have shown that the outcome of total wrist arthroplasty is poorer than compared to the hip and knee. More research is needed on the loading mechanisms of the implants in order to enhance the design of future generation implants. This study looks at the load transfer characteristics of the Universal 2 implant using a finite element model of a virtually implanted prosthesis during gripping. The results showed that the loading on the implant is higher on the dorsal and ulnar aspect than on the volar and radial aspect of the implant. The whole load is transmitted through the radius and none through the ulna.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2017.1336548 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:20:y:2017:i:10:p:1113-1121
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2017.1336548
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().