EconPapers    
Economics at your fingertips  
 

Glottis effects on the cough clearance process simulated with a CFD dynamic mesh and Eulerian wall film model

Concepción Paz, Eduardo Suárez, Oscar Parga and Jesús Vence

Computer Methods in Biomechanics and Biomedical Engineering, 2017, vol. 20, issue 12, 1326-1338

Abstract: In this study, we have reproduced the cough clearance process with an Eulerian wall film model. The simulated domain is based on realistic geometry from the literature, which has been improved by adding the glottis and epiglottis. The vocal fold movement has been included due to the dynamic mesh method, considering different abduction and adduction angles and velocities. The proposed methodology captures the deformation of the flexible tissue, considers non-Newtonian properties for the mucus, and enables us to reproduce a single cough or a cough epoch. The cough efficiency (CE) has been used to quantify the overall performance of the cough, considering many different boundary conditions, for the analysis of the glottis effect. It was observed that a viscous shear force is the main mechanism in the cough clearance process, while the glottis closure time and the epiglottis position do not have a significant effect on the CE. The cough assistance devices improve the CE, and the enhancement rate grows logarithmically with the operating pressure. The cough can achieve an effective mucus clearance process, even with a fixed glottis. Nevertheless, the glottis closure substantially improves the CE results.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2017.1360872 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:20:y:2017:i:12:p:1326-1338

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2017.1360872

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:20:y:2017:i:12:p:1326-1338