Identification of the critical level of implantation of an osseointegrated prosthesis for above-knee amputees
Elder Michael Andrango Castro,
Svatava Konvickova,
Matej Daniel and
Zdenek Horak
Computer Methods in Biomechanics and Biomedical Engineering, 2017, vol. 20, issue 14, 1494-1501
Abstract:
The aim of our study was to identify potential critical levels of implantation of an osseointegrated prosthesis for above-knee amputees. The implant used was the OPRA system. It was inserted in the femur at four different amputation heights, characterized by their residual limb ratios (0.299, 0.44, 0.58 and 0.73). The stress and strain distribution was evaluated in the bone-implant system during walking, considering a body mass of 100 kg. Considerably high stimulus (11,489 με) in the tissue near the tip was found at the highest implantation level. All models presented small non-physiologic stress values in the tissue around the implant. The results revealed that the implantation level has a decisive effect on bone-implant performance. Mainly, the analysis indicates adverse biomechanical conditions for implantations in very short residual limbs.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2017.1380799 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:20:y:2017:i:14:p:1494-1501
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2017.1380799
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().