EconPapers    
Economics at your fingertips  
 

The influence of inertial sensor sampling frequency on the accuracy of measurement parameters in rearfoot running

Christian Mitschke, Falk Zaumseil and Thomas L. Milani

Computer Methods in Biomechanics and Biomedical Engineering, 2017, vol. 20, issue 14, 1502-1511

Abstract: Increasingly, inertial sensors are being used for running analyses. The aim of this study was to systematically investigate the influence of inertial sensor sampling frequencies (SF) on the accuracy of kinematic, spatio-temporal, and kinetic parameters. We hypothesized that running analyses at lower SF result in less signal information and therefore the inability to sufficiently interpret measurement data. Twenty-one subjects participated in this study. Rearfoot strikers ran on an indoor running track at a velocity of 3.5 ± 0.1 ms−1. A uniaxial accelerometer was attached at the tibia and an inertial measurement unit was mounted at the heel of the right shoe. All sensors were synchronized at the start and data was measured with 1000 Hz (reference SF). Datasets were reduced to 500, 333, 250, 200, and 100 Hz in post-processing. The results of this study showed that a minimum SF of 500 Hz should be used to accurately measure kinetic parameters (e.g. peak heel acceleration). In contrast, stride length showed accurate results even at 333 Hz. 200 Hz were required to calculate parameters accurately for peak tibial acceleration, stride duration, and all kinematic measurements. The information from this study is necessary to correctly interpret measurement data of existing investigations and to plan future studies.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2017.1382482 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:20:y:2017:i:14:p:1502-1511

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2017.1382482

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:20:y:2017:i:14:p:1502-1511