EconPapers    
Economics at your fingertips  
 

Computational comparison of aortic root stresses in presence of stentless and stented aortic valve bio-prostheses

M. G. C. Nestola, E. Faggiano, C. Vergara, R. M. Lancellotti, S. Ippolito, C. Antona, S. Filippi, A. Quarteroni and R. Scrofani

Computer Methods in Biomechanics and Biomedical Engineering, 2017, vol. 20, issue 2, 171-181

Abstract: We provide a computational comparison of the performance of stentless and stented aortic prostheses, in terms of aortic root displacements and internal stresses. To this aim, we consider three real patients; for each of them, we draw the two prostheses configurations, which are characterized by different mechanical properties and we also consider the native configuration. For each of these scenarios, we solve the fluid–structure interaction problem arising between blood and aortic root, through Finite Elements. In particular, the Arbitrary Lagrangian–Eulerian formulation is used for the numerical solution of the fluid-dynamic equations and a hyperelastic material model is adopted to predict the mechanical response of the aortic wall and the two prostheses. The computational results are analyzed in terms of aortic flow, internal wall stresses and aortic wall/prosthesis displacements; a quantitative comparison of the mechanical behavior of the three scenarios is reported. The numerical results highlight a good agreement between stentless and native displacements and internal wall stresses, whereas higher/non-physiological stresses are found for the stented case.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2016.1207171 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:20:y:2017:i:2:p:171-181

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2016.1207171

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:20:y:2017:i:2:p:171-181