Accommodation of the human lens capsule using a finite element model based on nonlinear regionally anisotropic biomembranes
G. David,
R. M. Pedrigi and
J. D. Humphrey
Computer Methods in Biomechanics and Biomedical Engineering, 2017, vol. 20, issue 3, 302-307
Abstract:
Accommodation of the eyes, the mechanism that allows humans to focus their vision on near objects, naturally diminishes with age via presbyopia. People who have undergone cataract surgery, using current surgical methods and artificial lens implants, are also left without the ability to accommodate. The process of accommodation is generally well known; however the specific mechanical details have not been adequately explained due to difficulties and consequences of performing in vivo studies. Most studies have modeled the mechanics of accommodation under assumptions of a linearly elastic, isotropic, homogenous lens and lens capsule. Recent experimental and numerical studies showed that the lens capsule exhibits nonlinear elasticity and regional anisotropy. In this paper we present a numerical model of human accommodation using a membrane theory based finite element approach, incorporating recent findings on capsular properties. This study seeks to provide a novel perspective of the mechanics of accommodation. Such findings may prove significant in seeking biomedical solutions to restoring loss of visual power.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2016.1228907 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:20:y:2017:i:3:p:302-307
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2016.1228907
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().