A model of neurovascular coupling and the BOLD response: PART I
E. J. Mathias,
M. J. Plank and
T. David
Computer Methods in Biomechanics and Biomedical Engineering, 2017, vol. 20, issue 5, 508-518
Abstract:
The mechanisms with which neurons communicate with the vasculature to increase blood flow, termed neurovascular coupling is still unclear primarily due to the complex interactions between many parameters and the difficulty in accessing, monitoring and measuring them in the highly heterogeneous brain. Hence a solid theoretical framework based on existing experimental knowledge is necessary to study the relation between neural activity, the associated vasoactive factors released and their effects on the vasculature. Such a framework should also be related to experimental data so that it can be validated against repetitive experiments and generate verifiable hypothesis. We have developed a mathematical model which describes a signaling mechanism of neurovascular coupling with a model of pyramidal neuron and its corresponding fMRI BOLD response. In the first part of two papers we describe the integration of the neurovascular coupling unit extended to include a complex neuron model, which includes the important Na/K ATPase pump, with a model that provides a BOLD signal taking its input from the cerebral blood flow and the metabolic rate of oxygen consumption. We show that this produces a viable signal in terms of initial dip, positive and negative BOLD signals.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2016.1255732 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:20:y:2017:i:5:p:508-518
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2016.1255732
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().