On the assessment of bridging vein rupture associated acute subdural hematoma through finite element analysis
Zhao Ying Cui,
Nele Famaey,
Bart Depreitere,
Jan Ivens,
Svein Kleiven and
Jos Vander Sloten
Computer Methods in Biomechanics and Biomedical Engineering, 2017, vol. 20, issue 5, 530-539
Abstract:
Acute subdural hematoma (ASDH) is a type of intracranial haemorrhage following head impact, with high mortality rates. Bridging vein (BV) rupture is a major cause of ASDH, which is why a biofidelic representation of BVs in finite element (FE) head models is essential for the successful prediction of ASDH. We investigated the mechanical behavior of BVs in the KTH FE head model. First, a sensitivity study quantified the effect of loading conditions and mechanical properties on BV strain. It was found that the peak rotational velocity and acceleration and pulse duration have a pronounced effect on the BV strains. Both Young’s modulus and diameter are also negatively correlated with the BV strains. A normalized multiple linear regression model using Young’s modulus, outer diameter and peak rotational velocity to predict the BV strain yields an adjusted R2$ R^2 $-value of 0.81. Secondly, cadaver head impact experiments were simulated with varying sets of mechanical properties, upon which the amount of successful BV rupture predictions was evaluated. The success rate fluctuated between 67 and 75%. To further increase the predictive capability of FE head models w.r.t. BV rupture, future work should be directed towards improvement of the BV representation, both geometrically and mechanically.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2016.1255942 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:20:y:2017:i:5:p:530-539
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2016.1255942
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().