EconPapers    
Economics at your fingertips  
 

Computational fluid dynamics in abdominal aorta bifurcation: non-Newtonian versus Newtonian blood flow in a real case study

Armando A. Soares, Sílvia Gonzaga, Carlos Oliveira, André Simões and Abel I. Rouboa

Computer Methods in Biomechanics and Biomedical Engineering, 2017, vol. 20, issue 8, 822-831

Abstract: Hemodynamic in abdominal aorta bifurcation was investigated in a real case using computational fluid dynamics. A Newtonian and non-Newtonian (Walburn-Schneck) viscosity models were compared. The geometrical model was obtained by 3D reconstruction from CT-scan and hemodynamic parameters obtained by laser-Doppler. Blood was assumed incompressible fluid, laminar flow in transient regime and rigid vessel wall. Finite volume-based was used to study the velocity, pressure, wall shear stress (WSS) and viscosity throughout cardiac cycle. Results obtained with Walburn-Schneck’s model, during systole, present lower viscosity due to shear thinning behavior. Furthermore, there is a significant difference between the results obtained by the two models for a specific patient. During the systole, differences are more pronounced and are preferably located in the tortuous regions of the artery. Throughout the cardiac cycle, the WSS amplitude between the systole and diastole is greater for the Walburn-Schneck’s model than for the Newtonian model. However, the average viscosity along the artery is always greater for the non-Newtonian model, except in the systolic peak. The hemodynamic model is crucial to validate results obtained with CFD and to explore clinical potential.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2017.1302433 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:20:y:2017:i:8:p:822-831

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2017.1302433

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:20:y:2017:i:8:p:822-831