EconPapers    
Economics at your fingertips  
 

Influences of geometrical and mechanical properties of bone tissues in mandible behaviour – experimental and numerical predictions

A. Ramos, Yi. Nyashin and M. Mesnard

Computer Methods in Biomechanics and Biomedical Engineering, 2017, vol. 20, issue 9, 1004-1014

Abstract: The properties and geometry of bone in the mandible play a key role in mandible behaviour during a person’s lifetime, and attention needs to be paid to the influence of bone properties. We analysed the effect of bone geometry, size and bone properties in mandible behaviour, experimenting on cadaveric mandibles and FE models. The study was developed using the geometry of a cadaveric mandible without teeth. Three models of cadaveric condyles were experimentally tested with instrumented with four rosettes, and a condyle reaction of 300 N. Four finite element models were considered to validate the experiments and analyse mandible behaviour. One numeric model was simulated with 10 muscles in a quasi-static condition. The experimental results present different condyle stiffness’s, of 448, 215 and 254 N/mm. The values presented in the rosettes are influenced by bone geometry and bone thickness; maximum value was −600 με in rosette #4, and the maximum strain difference between mandibles was 111%. The numerical results show that bone density decreases and strain distribution increases in the thinner mandible regions. Nevertheless, the global behaviour of the structure remains similar, but presents different strain magnitudes. The study shows the need to take into account bone characteristics and their evolutions in order to improve implant design and fixation throughout the patient life. The change in bone stiffness promotes a change in maximum strain distribution with same global behaviour.

Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2017.1322072 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:20:y:2017:i:9:p:1004-1014

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2017.1322072

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:20:y:2017:i:9:p:1004-1014