Musculoskeletal modeling of user groups for virtual product and process development
Jörg Miehling
Computer Methods in Biomechanics and Biomedical Engineering, 2019, vol. 22, issue 15, 1209-1218
Abstract:
Although biomechanical digital human models find their way into virtual engineering processes, biomechanical considerations are currently still unrecognized to a large extent. One major obstacle lies in the fact that even though subject-specific modeling procedures are developed, virtual user groups or populations are still missing. The objective of this contribution is to create such groups of musculoskeletal models. Therefore, a modeling procedure based upon population data is described. First of all, two generic three-dimensional models, one with female and one with male average anthropometric dimensions, were obtained. These models constitute the starting point for the following model adjustment phases. Evenly distributed dimensionless values for gender, age, height, mass, range of motion and strength are sampled and translated into more expressive parameters for the mentioned modeling domains serving as input data for the creation of each individual model of the desired population or user group. The most sophisticated step of the adaption is the strength mapping aiming to create models matching arbitrary target joint torques. Finally, the models’ maximal strength is assessed in a manual material handling task and compared to empirical strength data. The approach is shown using the example of the German population.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2019.1651296 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:22:y:2019:i:15:p:1209-1218
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2019.1651296
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().