EconPapers    
Economics at your fingertips  
 

Separate modeling of cortical and trabecular bone offers little improvement in FE predictions of local structural stiffness at the proximal tibia

S. Mehrdad Hosseini Kalajahi, S. Majid Nazemi and James D. Johnston

Computer Methods in Biomechanics and Biomedical Engineering, 2019, vol. 22, issue 16, 1258-1268

Abstract: Quantitative computed tomography-based finite element (QCT-FE) modeling has potential to clarify the role of altered subchondral bone stiffness in osteoarthritis. The objective of this research was to evaluate different QCT-FE modeling and thresholding approaches to identify the method which best predicted experimentally measured local subchondral structural stiffness with highest explained variance and least error. Our results showed that separate modeling of proximal tibial cortical and trabecular bone offered little improvement in QCT-FE-predicted stiffness (0% to +3% improvement in explained variance) when compared to modeling the proximal tibia as a single structure. Based on the results of this study, we do not recommend separate modeling of cortical bone and trabecular bone when developing QCT-FE models of the proximal tibia for predicting subchondral bone stiffness.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2019.1661386 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:22:y:2019:i:16:p:1258-1268

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2019.1661386

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:22:y:2019:i:16:p:1258-1268