Modeling and simulation of musculoskeletal system of human lower limb based on tensegrity structure
Zhanxi Wang,
Chaoran Yang,
Kang Feng and
Xiansheng Qin
Computer Methods in Biomechanics and Biomedical Engineering, 2019, vol. 22, issue 16, 1282-1293
Abstract:
In this paper, a mechanical model of the skeletal muscle of human lower limb system is established by using the Hill muscle model and kinetic equation of the movement of lower extremities according to the attachment positions of skeletal muscle. State vector and neural control are delineated by the direct configuration method. Changes of gait and skeletal muscle stress during walking process are analyzed with energy consumption as objective function. Results illustrate that simulation data are in good agreement with actual walking gait data. Feasibility and correctness of the designed model and control behavior of skeletal muscle tension structure are also verified.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2019.1661389 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:22:y:2019:i:16:p:1282-1293
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2019.1661389
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().