EconPapers    
Economics at your fingertips  
 

Subject-specific geometry affects acetabular contact pressure during gait more than subject-specific loading patterns

Mariska Wesseling, Sam Van Rossom, Ilse Jonkers and Corinne R. Henak

Computer Methods in Biomechanics and Biomedical Engineering, 2019, vol. 22, issue 16, 1323-1333

Abstract: Finite element modeling (FEM) can predict hip cartilage contact mechanics. This study investigated how subject-specific boundary conditions and joint geometry affect acetabular cartilage contact mechanics using a multi-scale workflow. For two healthy subjects, musculoskeletal models calculated subject-specific hip kinematics and loading, which were used as boundary conditions for FEM. Cartilage contact mechanics were predicted using either generic or subject-specific FEM and boundary conditions. A subject-specific mesh resulted in a more lateral contact. Effects of subject-specific boundary conditions varied between both subjects. Results highlight the complex interplay between loading and kinematics and their effect on cartilage contact mechanics.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2019.1661393 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:22:y:2019:i:16:p:1323-1333

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2019.1661393

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:22:y:2019:i:16:p:1323-1333